Search results for "unidirectional composite"

showing 3 items of 3 documents

Three-dimensional analysis of load transfer micro-mechanisms in fibre/matrix composites

2009

International audience; This study gives a detailed analysis of load distributions around fibre breaks in a composite. In contrast to other studies reported in the literature, the analysis considers different configurations of composite damage from the failure of a few to the failure of many fibres. The model considers three types of matrix behaviours (elastic, elastic–plastic and viscoelastic) with or without debonding at the broken fibre/matrix interface. In this way, the usual limitations of the finite element approach are overcome so as to take into account the number and interactions of broken fibres whilst maintaining an evaluation of the various fields (stresses in particular).

Three dimensional analysisMaterials scienceFibre matrix interactionFinite element approachComposite number[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General EngineeringDamage accumulation02 engineering and technologyUnidirectional composites021001 nanoscience & nanotechnologyViscoelasticityFinite element modellingMatrix (mathematics)020303 mechanical engineering & transports0203 mechanical engineeringDebondingLoad transferCeramics and Composites[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Micro mechanismComposite material0210 nano-technology
researchProduct

Comparison of the accumulation of fibre breaks occurring in a unidirectional carbon/epoxy composite identified in a multi-scale micro-mechanical mode…

2010

National audience; A model to predict fibre break accumulation that takes into account all physical phenomena at the origin of the fibre break (i.e. the random nature, stress transfer due to breaks, fibre debonding and viscosity of the matrix) shows clearly that the failure of a unidirectional composite structure results in the formation of random fibre breaks which at higher loads coalesce into clusters of broken fibres. The object of the study is to experimentally confirm this scenario. Many techniques exist to detect the failure of carbon fibre composites, however none of them offer a resolution that allows this goal to be achieved in a non-destructive manner and in three dimensions. Hig…

fibre breakhigh resolution computed tomographymicromechanics[ SPI.MAT ] Engineering Sciences [physics]/Materialsunidirectional composite[SPI.MAT] Engineering Sciences [physics]/Materialsmulti-scale modelling[SPI.MAT]Engineering Sciences [physics]/Materials
researchProduct

Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures: Part 3. Multiscale reconstruction…

2008

International audience; This third article describes a multiscale process which takes into account the most important microscopic phenomena associated with composite degradation, including fibre fractures and interfacial debonding, overloading of fibres neighbouring a fibre break as well as viscoelastic behaviour of the matrix. The results have been used to accurately predict the macroscopic failure of unidirectional carbon fibre-reinforced epoxy and quantify damage accumulation in pressure vessels made of the same material. The approach described has allowed the acoustic emission activity resulting from fibres breaks to be evaluated and shown how the residual lifetimes of such vessels, whe…

Unidirectional compositeMaterials scienceComposite number[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyViscoelasticity0203 mechanical engineeringComposite materialCivil and Structural EngineeringFibre failuresDelaminationPressure vesselsMicromechanicsEpoxy021001 nanoscience & nanotechnologyDurabilityPressure vessel020303 mechanical engineering & transportsAcoustic emissionFailure predictionvisual_artCeramics and Compositesvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Multiscale processMicromechanics0210 nano-technology
researchProduct